想请教 stonebrook 前辈一个问题,在cfx论坛里看到你模拟的单个气泡,我也想做单个气泡的模拟,按照您的相法,也做了一个模拟,气泡随着时间的增加,开始消失,不知道为什么,能否指教一下,谢谢!我的email xujjun2000@sohu.com
out文件如下:
+--------------------------------------------------------------------+
| |
| CFX Command Language for Run |
| |
+--------------------------------------------------------------------+
EXECUTION CONTROL:
RUN DEFINITION:
Definition File = D:/xjj/2mmbubble_009.res
Interpolate Initial Values = Off
Run Mode = Full
END
PARALLEL HOST LIBRARY:
HOST DEFINITION: b
Installation Root = C:\CFXb\CFX-%v
Host Architecture String = intel_pentium_winnt5.1
END
END
PARTITIONER STEP CONTROL:
Multidomain Option = Independent Partitioning
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARTITIONING TYPE:
MeTiS Type = k-way
Option = MeTiS
Partition Size Rule = Automatic
Partition Weight Factors = 0.500, 0.500
END
END
SOLVER STEP CONTROL:
Runtime Priority = Standard
EXECUTABLE SELECTION:
Double Precision = Off
END
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARALLEL ENVIRONMENT:
Number of Processes = 2
Start Method = PVM Local Parallel
Parallel Host List = b*2
END
END
END
LIBRARY:
CEL:
EXPRESSIONS:
DenH = 1000 [kg m^-3]
DownH1 = 0.048 [m]
DownH2 = 0.0454 [m]
Rbubble1 = 0.001 [m]
dist1 = Rbubble1-sqrt((x-0.0025[m])^2+(z-0.002[m])^2)
UpVFbubble1 = step((dist1)/1[m])
UpVFwater1 = 1-UpVFbubble1
Pres1 = DenH*g*UpVFwater1*DownH1
Rbubble2 = 0.0006 [m]
dist2 = Rbubble2-sqrt((x-0.0025[m])^2+(z-0.0046[m])^2)
UpVFbubble2 = step((dist2)/1[m])
UpVFwater2 = 1-UpVFbubble2
pres2 = DenH*g*UpVFwater2*DownH2
END
END
MATERIAL: Air at 25 C
Material Description = Air at 25 C and 1 atm (dry)
Material Group = Air Data, Constant Property Gases
Option = Pure Substance
Thermodynamic State = Gas
PROPERTIES:
Option = General Material
Thermal Expansivity = 0.003356 [K^-1]
ABSORPTION COEFFICIENT:
Absorption Coefficient = 0.01 [m^-1]
Option = Value
END
DYNAMIC VISCOSITY:
Dynamic Viscosity = 1.831E-05 [kg m^-1 s^-1]
Option = Value
END
EQUATION OF STATE:
Density = 1.185 [kg m^-3]
Molar Mass = 28.96 [kg kmol^-1]
Option = Value
END
REFRACTIVE INDEX:
Option = Value
Refractive Index = 1.0 [m m^-1]
END
SCATTERING COEFFICIENT:
Option = Value
Scattering Coefficient = 0.0 [m^-1]
END
SPECIFIC HEAT CAPACITY:
Option = Value
Reference Pressure = 1 [atm]
Reference Specific Enthalpy = 0. [J/kg]
Reference Specific Entropy = 0. [J/kg/K]
Reference Temperature = 25 [C]
Specific Heat Capacity = 1.0044E+03 [J kg^-1 K^-1]
Specific Heat Type = Constant Pressure
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 2.61E-02 [W m^-1 K^-1]
END
END
END
MATERIAL: Water
Material Description = Water (liquid)
Material Group = Water Data, Constant Property Liquids
Option = Pure Substance
Thermodynamic State = Liquid
PROPERTIES:
Option = General Material
Thermal Expansivity = 2.57E-04 [K^-1]
ABSORPTION COEFFICIENT:
Absorption Coefficient = 1.0 [m^-1]
Option = Value
END
DYNAMIC VISCOSITY:
Dynamic Viscosity = 8.899E-4 [kg m^-1 s^-1]
Option = Value
END
EQUATION OF STATE:
Density = 997.0 [kg m^-3]
Molar Mass = 18.02 [kg kmol^-1]
Option = Value
END
REFRACTIVE INDEX:
Option = Value
Refractive Index = 1.0 [m m^-1]
END
SCATTERING COEFFICIENT:
Option = Value
Scattering Coefficient = 0.0 [m^-1]
END
SPECIFIC HEAT CAPACITY:
Option = Value
Reference Pressure = 1 [atm]
Reference Specific Enthalpy = 0.0 [J/kg]
Reference Specific Entropy = 0.0 [J/kg/K]
Reference Temperature = 25 [C]
Specific Heat Capacity = 4181.7 [J kg^-1 K^-1]
Specific Heat Type = Constant Pressure
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 0.6069 [W m^-1 K^-1]
END
END
END
END
FLOW:
DOMAIN: Domain 1
Coord Frame = Coord 0
Domain Type = Fluid
Fluids List = Air at 25 C,Water
Location = Assembly
BOUNDARY: out
Boundary Type = OPENING
Location = OUTLET
BOUNDARY CONDITIONS:
FLOW DIRECTION:
Option = Normal to Boundary Condition
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Opening Pressure and Direction
Relative Pressure = 0 [Pa]
END
END
FLUID: Air at 25 C
BOUNDARY CONDITIONS:
VOLUME FRACTION:
Option = Value
Volume Fraction = 1
END
END
END
FLUID: Water
BOUNDARY CONDITIONS:
VOLUME FRACTION:
Option = Value
Volume Fraction = 0
END
END
END
END
BOUNDARY: Domain 1 Default
Boundary Type = WALL
Location = INLET,SURFS A,SURFS B
BOUNDARY CONDITIONS:
WALL INFLUENCE ON FLOW:
Option = No Slip
END
END
FLUID PAIR: Air at 25 C | Water
BOUNDARY CONDITIONS:
WALL ADHESION:
Option = None
END
END
END
END
BOUNDARY: sym1
Boundary Type = SYMMETRY
Location = FRONT
END
BOUNDARY: sym2
Boundary Type = SYMMETRY
Location = BACK
END
DOMAIN MODELS:
BUOYANCY MODEL:
Buoyancy Reference Density = 1.3 [kg m^-3]
Gravity X Component = 0 [m s^-2]
Gravity Y Component = 0 [m s^-2]
Gravity Z Component = -9.8 [m s^-2]
Option = Buoyant
BUOYANCY REFERENCE LOCATION:
Option = Automatic
END
END
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
REFERENCE PRESSURE:
Reference Pressure = 1 [atm]
END
END
FLUID: Air at 25 C
FLUID MODELS:
FLUID BUOYANCY MODEL:
Option = Density Difference
END
MORPHOLOGY:
Option = Continuous Fluid
END
END
END
FLUID: Water
FLUID MODELS:
FLUID BUOYANCY MODEL:
Option = Density Difference
END
MORPHOLOGY:
Option = Continuous Fluid
END
END
END
FLUID MODELS:
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Fluid Temperature = 25 [C]
Homogeneous Model = True
Option = Isothermal
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = Laminar
END
END
FLUID PAIR: Air at 25 C | Water
Surface Tension Coefficient = 0.07256 [N m^-1]
INTERPHASE TRANSFER MODEL:
Option = Free Surface
END
MASS TRANSFER:
Option = None
END
SURFACE TENSION MODEL:
Option = Continuum Surface Force
Primary Fluid = Air at 25 C
Volume Fraction Smoothing Type = Volume-Weighted
END
END
MULTIPHASE MODELS:
Homogeneous Model = On
FREE SURFACE MODEL:
Option = Standard
END
END
END
INITIALISATION:
Option = Automatic
FLUID: Air at 25 C
INITIAL CONDITIONS:
VOLUME FRACTION:
Option = Automatic with Value
Volume Fraction = UpVFbubble1
END
END
END
FLUID: Water
INITIAL CONDITIONS:
VOLUME FRACTION:
Option = Automatic with Value
Volume Fraction = UpVFwater1
END
END
END
INITIAL CONDITIONS:
Velocity Type = Cartesian
CARTESIAN VELOCITY COMPONENTS:
Option = Automatic with Value
U = 0 [m s^-1]
V = 0 [m s^-1]
W = 0 [m s^-1]
END
STATIC PRESSURE:
Option = Automatic with Value
Relative Pressure = Pres1
END
END
END
OUTPUT CONTROL:
RESULTS:
File Compression Level = Default
Option = Standard
END
TRANSIENT RESULTS: Transient Results 1
File Compression Level = Default
Option = Standard
Time Interval = 0.002
END
END
SIMULATION TYPE:
Option = Transient
INITIAL TIME:
Option = Automatic with Value
Time = 0
END
TIME DURATION:
Option = Total Time
Total Time = 1
END
TIME STEPS:
Option = Timesteps
Timesteps = 0.0001
END
END
SOLUTION UNITS:
Angle Units = [rad]
Length Units = [m]
Mass Units = [kg]
Solid Angle Units = [sr]
Temperature Units = [K]
Time Units =
END
SOLVER CONTROL:
ADVECTION SCHEME:
Option = High Resolution
END
CONVERGENCE CONTROL:
Maximum Number of Coefficient Loops = 15
Timescale Control = Coefficient Loops
END
CONVERGENCE CRITERIA:
Residual Target = 0.00001
Residual Type = RMS
END
TRANSIENT SCHEME:
Option = Second Order Backward Euler
END
END
END
COMMAND FILE:
Version = 10.0
Results Version = 10.0
END
+--------------------------------------------------------------------+
| |
| Partitioning |
| |
+--------------------------------------------------------------------+ |