|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
From我的博客:http://blog.sina.com.cn/vonkarman
LBM PalaBos 新版本将在1周内发布, 敬请期待!
以下是新版本中的自由表面流的在例子(流体为水)。 敬请享用……
计算图像见: http://blog.sina.com.cn/vonkarman
#include "palabos3D.h"
#include "palabos3D.hh"
using namespace plb;
using namespace std;
#define DESCRIPTOR descriptors::ForcedD3Q19Descriptor
typedef double T;
// Smagorinsky constant for LES model.
const T cSmago = 0.14;
// Physical dimensions of the system (in meters).
const T lx = 3.22;
const T ly = 1.0;
const T lz = 1.0;
const T iniRhoFluid = T(1);
const T rhoEmpty = T(1);
Array<T,3> forceOrientation(T(),T(),(T)1);
plint writeImagesIter = 100;
plint getStatisticsIter = 20;
plint maxIter;
plint N;
plint nx, ny, nz;
T delta_t, delta_x;
Array<T,3> externalForce;
T nuPhys, nuLB, tau, omega;
std::string outDir;
plint obstacleCenterXYplane, obstacleLength, obstacleWidth, obstacleHeight, beginWaterReservoir, waterReservoirHeight;
plint waterLevelOne, waterLevelTwo, waterLevelThree, waterLevelFour;
void setupParameters() {
delta_x = T(1)/N;
nx = (plint) (lx*N);
ny = (plint) (ly*N);
nz = (plint) (lz*N);
// Gravity in lattice units.
externalForce = Array<T,3>(0., 0., (-9.8* delta_t * delta_t)/delta_x);
tau = (nuPhys*DESCRIPTOR<T>::invCs2*delta_t)/(delta_x*delta_x) + 0.5;
omega = 1./tau;
nuLB = (tau-0.5)*DESCRIPTOR<T>::cs2; // Viscosity in lattice units.
obstacleCenterXYplane = util::roundToInt(0.744*N);
obstacleLength = util::roundToInt(0.403*N);
obstacleWidth = util::roundToInt(0.161*N);
obstacleHeight = util::roundToInt(0.161*N);
beginWaterReservoir = util::roundToInt((0.744+1.248)*N);
waterReservoirHeight = util::roundToInt(0.55*N);
waterLevelOne = util::roundToInt(0.496*N);
waterLevelTwo = util::roundToInt(2.*0.496*N);
waterLevelThree = util::roundToInt(3.*0.496*N);
waterLevelFour = util::roundToInt((3.*0.496 + 1.150)*N);
}
// Specifies the initial condition for the fluid (each cell is assigned the
// flag "fluid", "empty", or "wall").
int initialFluidFlags(plint iX, plint iY, plint iZ) {
// Place an obstacle on the left end, which is hit by the fluid.
bool insideObstacle =
iX >= obstacleCenterXYplane-obstacleWidth/2 &&
iX <= obstacleCenterXYplane+obstacleWidth/2 &&
iY >= ny/2-obstacleLength/2 &&
iY <= ny/2+obstacleLength/2 &&
iZ <= obstacleHeight+1;
if (insideObstacle) {
return freeSurfaceFlag::wall;
}
else if (iX >= beginWaterReservoir && iZ <= waterReservoirHeight) {
return freeSurfaceFlag::fluid;
}
else {
return freeSurfaceFlag::empty;
}
}
void writeResults(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, MultiScalarField3D<T>& volumeFraction, plint iT)
{
static const plint nx = lattice.getNx();
static const plint ny = lattice.getNy();
static const plint nz = lattice.getNz();
Box3D slice(0, nx-1, ny/2, ny/2, 0, nz-1);
ImageWriter<T> imageWriter("leeloo");
imageWriter.writeScaledPpm(createFileName("u", iT, 6),
*computeVelocityNorm(lattice, slice));
imageWriter.writeScaledPpm(createFileName("rho", iT, 6),
*computeDensity(lattice, slice));
imageWriter.writeScaledPpm(createFileName("volumeFraction", iT, 6), *extractSubDomain(volumeFraction, slice));
// Use a marching-cube algorithm to reconstruct the free surface and write an STL file.
std::vector<T> isoLevels;
isoLevels.push_back((T) 0.5);
typedef TriangleSet<T>::Triangle Triangle;
std::vector<Triangle> triangles;
isoSurfaceMarchingCube(triangles, volumeFraction, isoLevels, volumeFraction.getBoundingBox().enlarge(-5));
TriangleSet<T>(triangles).writeAsciiSTL(createFileName(outDir+"/interface", iT, 6)+".stl");
}
void writeStatistics(FreeSurfaceFields3D<T,DESCRIPTOR>& fields) {
pcout << " -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- " << endl;
T averageMass = freeSurfaceAverageMass<T,DESCRIPTOR>(fields.freeSurfaceArgs, fields.lattice.getBoundingBox());
pcout << "Average Mass: " << averageMass << endl;
T averageDensity =freeSurfaceAverageDensity<T,DESCRIPTOR>(fields.freeSurfaceArgs, fields.lattice.getBoundingBox());
pcout << "Average Density: " << setprecision(12) << averageDensity << endl;
T averageVolumeFraction = freeSurfaceAverageVolumeFraction<T,DESCRIPTOR>(fields.freeSurfaceArgs, fields.lattice.getBoundingBox());
pcout << "Average Volume-Fraction: " << setprecision(12) << averageVolumeFraction << endl;
T heightAtOne = getAverageHeightAtXY<T,DESCRIPTOR> (
fields.freeSurfaceArgs, N,
Box3D(waterLevelOne, waterLevelOne, ny/2, ny/2, 1, nz-1) );
pcout << "Height at pos 1: " << setprecision(12) << heightAtOne << endl;
T heightAtTwo = getAverageHeightAtXY<T,DESCRIPTOR> (
fields.freeSurfaceArgs, N,
Box3D(waterLevelTwo,waterLevelTwo,ny/2,ny/2,1,nz-1) );
pcout << "Height at pos 2: " << setprecision(12) << heightAtTwo << endl;
T heightAtThree = getAverageHeightAtXY<T,DESCRIPTOR> (
fields.freeSurfaceArgs, N,
Box3D(waterLevelThree,waterLevelThree,ny/2,ny/2,1,nz-1) );
pcout << "Height at pos 3: " << setprecision(12) << heightAtThree << endl;
T heightAtFour = getAverageHeightAtXY<T,DESCRIPTOR> (
fields.freeSurfaceArgs, N,
Box3D(waterLevelFour,waterLevelFour, ny/2,ny/2, 1,nz-1) );
pcout << "Height at pos 4: " << setprecision(12) << heightAtFour << endl;
pcout << " -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- " << endl;
}
int main(int argc, char **argv)
{
plbInit(&argc, &argv);
global::directories().setInputDir("./");
if (global::argc() != 6) {
pcout << "Error missing some input parameter\n";
}
try {
global::argv(1).read(outDir);
global::directories().setOutputDir(outDir+"/");
global::argv(2).read(nuPhys);
global::argv(3).read(N);
global::argv(4).read(delta_t);
global::argv(5).read(maxIter);
}
catch(PlbIOException& except) {
pcout << except.what() << std::endl;
pcout << "The parameters for this program are :\n";
pcout << "1. Output directory name.\n";
pcout << "2. kinematic viscosity in physical Units (m^2/s) .\n";
pcout << "3. number of lattice nodes for lz .\n";
pcout << "4. delta_t .\n";
pcout << "5. maxIter .\n";
pcout << "Reasonable parameters on a desktop computer are: " << (std::string)global::argv(0) << " tmp 1.e-5 40 1.e-3 80000\n";
pcout << "Reasonable parameters on a parallel machine are: " << (std::string)global::argv(0) << " tmp 1.e-6 100 1.e-4 80000\n";
exit (EXIT_FAILURE);
}
setupParameters();
pcout << "delta_t= " << delta_t << endl;
pcout << "delta_x= " << delta_x << endl;
pcout << "delta_t*delta_t/delta_x= " << delta_t*delta_t/delta_x << endl;
pcout << "externalForce= " << externalForce[2] << endl;
pcout << "relaxation time= " << tau << endl;
pcout << "omega= " << omega << endl;
pcout << "kinematic viscosity physical units = " << nuPhys << endl;
pcout << "kinematic viscosity lattice units= " << nuLB << endl;
global::timer("initialization").start();
SparseBlockStructure3D blockStructure(createRegularDistribution3D(nx, ny, nz));
Dynamics<T,DESCRIPTOR>* dynamics
= new SmagorinskyBGKdynamics<T,DESCRIPTOR>(omega, cSmago);
FreeSurfaceFields3D<T,DESCRIPTOR> fields(blockStructure, dynamics->clone(), iniRhoFluid, rhoEmpty, externalForce);
// Set all outer-wall cells to "wall" (here, bulk-cells are also set to "wall", but it
// doesn't matter, because they are overwritten on the next line).
setToConstant(fields.flag, fields.flag.getBoundingBox(), (int)freeSurfaceFlag::wall);
// In the bulk (all except outer wall layer), initialize the flags as specified by
// the function "initialFluidFlags".
setToFunction(fields.flag, fields.flag.getBoundingBox().enlarge(-1), initialFluidFlags);
fields.defaultInitialize();
pcout << "Time spent for setting up lattices: "
<< global::timer("initialization").stop() << endl;
T lastIterationTime = T();
for (plint iT = 0; iT <= maxIter; ++iT) {
global::timer("iteration").restart();
if (iT % getStatisticsIter==0) {
pcout << endl;
pcout << "ITERATION = " << iT << endl;
pcout << "Time of last iteration is " << lastIterationTime << " seconds" << endl;
writeStatistics(fields);
}
// This includes the collision-streaming cycle, plus all free-surface operations.
fields.lattice.executeInternalProcessors();
if (iT % writeImagesIter == 0) {
global::timer("images").start();
writeResults(fields.lattice, fields.volumeFraction, iT);
pcout << "Total time spent for writing images: "
<< global::timer("images").stop() << endl;
}
lastIterationTime = global::timer("iteration").stop();
}
} |
|