找回密码
 注册
查看: 2282|回复: 8

求高人推荐几篇无网格LBM的文章

[复制链接]
发表于 2014-5-5 13:51:23 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
发表于 2014-5-5 19:45:31 | 显示全部楼层

回复 1# demon891213 的帖子

If it means "meshless LBM", there exists no such thing! To my understanding, meshless method is based on a path-independent integration formulation. For the Navier-Stokes equation, this is impossible, although it can be done for the Euler equation.

Nevertheless, you can find "meshless LBE" through search online.
 楼主| 发表于 2014-5-6 16:04:01 | 显示全部楼层

回复 2# luo@odu.edu 的帖子

谢谢罗老师的回答,还有一个问题想请教一下您,关于LBM在多少Re数计算比较可信,我想用LBM模拟比高Re数(10w左右)的湍流流动,但是大部分文献说LBM适合低Re数下的数值计算,最高也在几千Re数下的流体流动情况,但是看了您一篇文献‘LES of turbulent square jet flow using anMRT lattice Boltzmann model’里面的模型Re数达到184,000,是否LBM跟LES结合可以突破高Re数的限制,得到较好的结果?还有LES-LBM模型比传统k-e的模型有哪些优势和哪些劣势?
发表于 2014-5-6 19:00:53 | 显示全部楼层

回复 3# demon891213 的帖子

1) If the LBM is used for DNS (direct numerical simulation), it cannot break usual barrier for DNS. The grid Reynolds number must be within that limit.

2) LES is entirely different -- it is a model. The Re can be very high, and this has nothing to do with the LBM , which is just a CFD tool to realize LES. Whether LES is accurate or not is essential and entirely different question.

3) LES and k-e model are fundamentally different things. This has nothing to do with the LBM.
 楼主| 发表于 2014-5-6 19:30:23 | 显示全部楼层

回复 4# luo@odu.edu 的帖子

我是刚接触LBM没多久,可能对LBM(格子玻尔兹曼方法)和LBE(格子玻尔兹曼方程)有点模糊,经常把两者等同为一样的,是不是应该称为LES-LBE,那它的优势在哪啊?
发表于 2014-5-7 20:12:57 | 显示全部楼层

回复 5# demon891213 的帖子

LBM and LBE are often used as synonym, although I thought the the former is more general than the latter. But this is not an important point.

LES is entirely different, and it is independent of LBE. One advantage of LBE is that it has 2nd-order accuracy of stress, few, if any, finite-difference schemes have this characteristics. See the proof in the following paper:

W.-A. Yong and L.-S. Luo.
Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions.
Physical Review E 86(6):065701 (December 2012).

Since the stresses are the crucial variable in LES, better accuracy of them (in LBE) would lead to better results.
 楼主| 发表于 2014-5-8 08:42:31 | 显示全部楼层

回复 6# luo@odu.edu 的帖子

明白了,谢罗老师答疑
发表于 2014-5-9 17:32:59 | 显示全部楼层
你是用VOF方法做问题么?
 楼主| 发表于 2014-5-10 12:23:40 | 显示全部楼层

回复 8# clara 的帖子

不是啊,怎么了
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表