|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
不久前,AccelerEyes刚刚发布了Jacket for MATLAB的重大更新v1.1(参见:“Jacket v1.1发布-MATLAB GPU插件支持双精度浮点计算”一文),最近又有了Jacket v1.1.1小版本的改进。其中包括了“grand()”随机数生成器和针对FFT(快速傅里叶变换)的双精度支持。
新版本的改进如下:
增加:
+ fft is now supported for gdouble inputs.
+ grandn - GPU version of randn.
+ grand - GPU version of rand.
+ sort(X) is now supported.
+ cumsum(X) is now supported for vectors.
+ cumprod(X) is now supported for vectors.
+ permute, ipermute is now supported.
+ repmat is now supported for complex inputs.
+ The gcache command now allows users to manipulate the cache by flushing, saving or loading it.
+ The command 'ghelp' displays information about functions supported by Jacket on the MATLAB console:
- Features different from MATLAB's implementation of the function
- Supported syntax for the function
- Where relevant, whether a function can be used within a gfor loop.
+ mod and rem now have complex support.
+ xor support for float data types.
修正:
+ conv2(A,B,'same') with subscripted references to A and B now produces correct results.
+ dot(A,B) performed on 2D matrices now gives an error message instead of an incorrect result.
+ Fixed a rounding issue that caused cast to work incorrectly on gsingle-to-guint32 conversion.
+ isinteger now returns a single value for an array, instead of an array of values.
+ Fixed an issue in isfloat which was causing it to return incorrect results.
+ Sign no longer gives incorrect results for real gdouble data.
+ Fixed an issue where mod did not work similar to MATLAB.
+ Fixed an issue where rem returned incorrect results.
+ Subscripted assignments of the type A(B) = C now work for real A and complex C.
+ circshift no longer gives erroneous results with shifts greater than the dimension of the input.
+ atan2 and hypot no longer cause GPU failure for real inputs of different precision types.
+ repmat(A,M,N) now returns an error message if M and N are GPU variables.
+ Fixed a bug that caused assignments of the type A = B(1:N, to crash beyond a particular subscript N.
使用Jacket 1.1.1需要CUDA 2.3(1.1版本对应CUDA 2.2),同时NVIDIA显卡(Tesla)驱动也要求190+版本。CUDA驱动和工具集可以从这里下载:http://www.nvidia.com/object/cuda_get.html
AccelerEyes预期下一个版本Jacket 1.2将在很短的时间内发布,它将支持运行Jacket时跨越多个GPU(以前的Jacket也能够支持一台主机上的多个GPU,不过每个只能用于加速多个进程中的一个)。Jacket 1.2结合了MATLAB's Parallel Computing Toolbox (PCT)并行计算工具箱。针对系统中的每个GPU(包括工作站和集群中的),一个PCT任务将被赋予“具有将计算工作从CPU卸载到GPU”的能力。这样就能够在任意可提供的硬件配置上发挥出最大性能(特别是配置了多块Tesla C1060计算处理器的系统)。在期盼这个版本的过程中,我们建议您尝试PCT并了解关于“它是怎样提升您的多核工作站或者集群的计算性能”。您能够从这里了解更多:MATLAB PCT
点击进入相关产品页面
http://www.quadro.net.cn/Pro_ProductList.aspx?id=107
|
|