美国罗切斯特大学的研究人员创造了一种温度和压力都足够低的超导材料。 “有了这种材料,室温超导和应用技术的曙光已经到来,”由机械工程和物理学助理教授Ranga Dias领导的一个团队如是说。在《自然》杂志上的一篇论文中,研究人员描述了一种氮掺杂的氢化镥(NDLH),它在69华氏度(20.5摄氏度)和10千巴(145,000磅/平方英寸,或psi)的压力下表现出超导性。 一个多世纪以来,科学家们一直在追求凝聚态物理学的这一突破。超导材料具有两个关键特性:电阻消失,磁场被超导材料排斥在其外部。这些材料因而可以用于无损电力传输、无摩擦磁悬浮列车、廉价的医学成像和扫描技术(MRI、心磁图等)、高效快速的电子元件和利用磁场约束等离子体的托卡马克装置。 此前,Dias团队在《自然》和《物理评论快报》的论文中曾经报告了两种材料——碳质氢化硫和钇超氢化物,这两种材料分别在58华氏度/ 39万psi和12华氏度/ 26万psi下实现了超导。 鉴于这一新发现的重要性,迪亚斯和他的团队长篇大论地记录了他们的研究成果,以免遭到大量的质疑和批评。在迪亚斯发表上一篇《自然》论文后,曾经出现了大量的批评,这些批评导致了那篇论文被撤回。迪亚斯说,之前的那篇论文已经重新提交给《自然》杂志,并提供了新的数据,验证了早期的工作。新数据是在实验室外的阿贡和布鲁克海文国家实验室的科学家们面前收集的。新论文也采取了这样的方法。 超导及其它领域的“惊艳转换” 近年来,通过将稀土金属与氢结合,然后添加氮或碳而制成的氢化物为研究人员提供了制造超导材料的诱人的“有效配方”。在技术术语中,稀土金属氢化物形成包合物状笼状结构,其中稀土金属离子充当载体,提供足够的电子来增强氢分子的解离,氮和碳则有助于稳定材料。这个过程的底线是:发生超导所需的压力较小。 除钇外,研究人员还使用了其它稀土金属,然而他们所得到的化合物仍然不能在实用的温度或压力下变得超导。所以,这一次,迪亚斯看向了元素周期表的其它地方。 镥看起来像“一个很好的候选者,”迪亚斯说。它在其f轨道构型中具有高度局域化的完全填充的14个电子,可抑制声子软化,并增强在环境温度下发生超导性所需的电子-声子耦合。 “关键问题是,我们将如何稳定这种情况以降低所需的压力?这时就需要氮分子登场了。”根据迪亚斯的说法,氮和碳一样,具有刚性的原子结构,可用于在材料内创建更稳定的笼状晶格,并使低频光学声子硬化。这种结构为超导性在较低压力下发生提供了稳定性。 迪亚斯的团队创造了一种99%氢气和1%氮气的气体混合物,将其放入装有纯镥样品的反应室中,让各种组分在392华氏度下反应两到三天。由此产生的镥-氮-氢化合物最初具有“蓝色的光泽”。当化合物在金刚石砧单元中被压缩时,发生了“惊艳的转变”:在超导发生时从蓝色变为粉红色,然后再变成鲜红色的非超导金属状态。 “这是一种非常鲜艳的红色,”迪亚斯说。 “看到这种强度的颜色,我感到震惊。我们幽默地为这种状态下的材料建议了一个代号——'红物质(reddmatter)'——以斯波克在2009年流行的《星际迷航》电影中创造的材料命名。 诱导超导所需的145,000 psi压力比迪亚斯实验室先前产生的压强低了近两个数量级。 用于预测新超导材料的机器学习算法 迪亚斯的实验室现在已经回答了超导材料是否可以存在于足够低的环境温度和压力之下以用于实际应用的问题。 “通往超导消费电子产品、能量传输线、运输以及聚变磁约束的重大改进的途径现在已经被打通,”迪亚斯说, “我们相信我们现在正处于现代超导时代。”迪亚斯预测,氮掺杂的氢化镥将大大加快托卡马克机器的开发进度以实现核聚变。迪亚斯说,NDLH在室温下产生“巨大的磁场”,将成为新兴技术的“游戏规则改变者”。 根据Dias的说法,特别令人兴奋的是,他可以利用实验室超导实验积累的数据来训练机器学习算法,以预测其它可能的超导材料,即从数千种可能的稀土金属、氮、氢和碳的组合中通过混合和匹配获得新的超导材料。 “在日常生活中,我们有许多不同的金属用于不同的应用,所以我们也需要不同种类的超导材料,”迪亚斯说。 “就像我们在不同的应用中使用不同的金属一样,我们需要更多的室温超导体用于不同的应用。 “ 这篇论文的共同作者Keith Lawlor已经开始开发算法,并使用罗切斯特大学综合研究计算中心提供的超级计算资源进行计算。 纽约州北部的超导材料中心 迪亚斯的研究小组最近搬进了位于滨河校区霍普曼大厅三楼的一个新扩建的实验室。他说,这是在罗切斯特大学启动可以授予学位的超导创新中心(CSI)计划的第一步。该中心将创建一个生态系统,吸引更多的教师和科学家到罗切斯特大学推动超导科学的进步,同时训练有素的学生也将扩大该领域的研究团队。 “我们希望使纽约州北部成为超导技术中心,”迪亚斯说。 更多信息:Ranga Dias,N掺杂氢化镥中近环境超导性的证据,《自然》(2023)。DOI:10.1038/s41586-023-05742-0。www.nature.com/articles/s41586-023-05742-0 (本站节译自phys.org) |