找回密码
 注册
查看: 3062|回复: 6

关于计算理想气体压力的问题

[复制链接]
发表于 2014-9-23 19:54:56 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
不太明白LB里,如果要计算实际的压力,应该将格子尺度的密度转换成实际密度,然后用理想气体状态方程算?还是用LB模型里隐含的密度和压力的关系,最后将LB单位的压力转换成物理空间压力的单位?
QQ截图20140923195719.png
发表于 2014-9-24 21:45:38 | 显示全部楼层

回复 1# legendpan 的帖子

Eqn. (2) is incorrect: p = c_s^2 \rho, also, c_s^2 = R T.
 楼主| 发表于 2014-9-25 14:36:04 | 显示全部楼层

回复 2# luo@odu.edu 的帖子

sorry for mistyping Eqn.(2).
c_s^2 = R T, c_s is a constant, then can temperature T  be changed?
If I need to caculate pressure in physical unit, whether should I get it from Eqn.(1) by temperature in phsical unit or  directly transform  pressure in lattice unit into physical unit?
发表于 2014-9-29 02:41:24 | 显示全部楼层

回复 3# legendpan 的帖子

NO -- the temperature T has to be a constant to the grid spacing is uniform.

So, the temperature T has to be dealt with in a separately (by another equation). This is an inherent limitation of the LBE (so it is NOT a genuine compressible scheme). That is the point I have been talking about and getting no where. ;-}
 楼主| 发表于 2014-9-29 14:42:19 | 显示全部楼层
I get it. Do you mean that in Eqn. cs=R*T_1, the temperature T_1 is not the real temperatue. If I caculate temperature separately by another distribution function, I yield the real temperature, T_2. So T_2 has nothing to do with T_1. Beacuse the D2Q9 is a imcompressible model.
发表于 2014-10-3 22:43:44 | 显示全部楼层

回复 5# legendpan 的帖子

Yes, you get that more or less right. You can read the papers by Lallemand and Luo on the analysis of this.
 楼主| 发表于 2014-10-6 14:46:07 | 显示全部楼层

回复 6# luo@odu.edu 的帖子

Thank you for your suggestion.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表